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Abstract

This paper presents and evaluates the numerical solution of a coupled
system of equations that arises in a model for the formation and evolution
of three-dimensional longshore sand ridges. The model is based on the in-
teraction between surficial or internal weakly nonlinear shallow-water waves,
having weak spanwise spatial dependence, and the deformable bottom to-
pography.

The presentation of the details concerning the discretization of the model
is primarily motivated by two facts: (1) The model involves equations for
which little is known regarding its solutions, and (2) the predictor-corrector
scheme presented here, which combines finite difference techniques and fixed-
point methods, is simple, fast, and general enough to be used in the dis-
cretization of partial differential equations with local nonlinearities whose

solutions are smooth.



1 Introduction

The following system of equations constitute a model for the formation and evolu-

tion of three-dimensional sand ridges on the continental shelf:

e — iK1y, + iKsf(z,y)ar + iKse®atay = 0
(ge — i Kty + i Ko f(2,y)az + i Kget0a? = 0
ar(z=0,y) = A(y)

az(z =0,y) = Ax(y),

and
Dhe,y,T) = Ll (ar,0) + vy(ar, @)
h(z,y,0) = H(z,y),
with appropriate boundary conditions on y = 0 and y = N. The real constant
coefficients K are O(a, ), where « characterizes the degree of nonlinearity of the
waves and ¢ the size of the slopes of the bottom topography. The constants are
given in the appendix. Equation (1) describes the spatial structure of the complex
amplitudes of the two most energetic modes of weakly nonlinear dispersive ocean
waves traveling in the shoreward direction = over a deformable bottom topography
h =1+¢cf(x,y). The variable y is the spanwise coordinate. The bottom evolution
obeys the mass transport relation, Eq. (2). A full description of the model appears
in [1] and [2].
Owing to the widely discrepant time scales between the (fast) evolution of the
water waves and the (slow) bottom topography, this coupled system may be solved

iteratively: Given an initial bottom configuration H(x,y), we seek a solution to the



water waves using Eq. (1). The bottom is then updated using the mass transport
equation, and the whole procedure is repeated with the new bottom until some
prescribed time.

The similarity of Eq. (1) to the nonlinear Schrodinger equation (NLSE) leads
us to conjecture that the numerical technique presented here applies to the NLSE
in a straightforward manner. In fact, any equation or system with solutions of
sufficient regularity with local nonlinearity may be solved by our method.

Several issues have motivated the particular choice of the scheme to be pre-
sented: (1) an efficient, simple, and sufficiently accurate method is desired to
implement the above nonstiff, nonlinear system numerically; (2) the accuracy re-
quirements are not very sophisticated since the main objective is the exploration
of phenomenological questions; (3) a uniform grid is preferred over a variable one,
so that both the surface and mass transport equations may be easily computed
on the same grid; and (4) the computational domain is fairly large for the sort of
problem presented in this study. We refer to the numerical scheme adopted in this
study as the fixed-point method (FPM). Among its best features are low storage
requirements and high speed.

The input to the model is composed of an initial bottom configuration and the
mode amplitudes at the line © = 0. The required dynamical parameters are the
fundamental frequency, which is needed to determine the K constants; an estimate
of the size of @ < 1 and f < 1, respectively giving the degree of nonlinearity
and dispersiveness in the waves; and the dimensions of the rectangular patch,

0>x>M,0>y> N, of ocean on which the solution is to be computed.



The following difference operators pertain to the discretization:

A, = u(gjt1) — u(q)) forward difference
V, =ul(q;) — u(gj-1) backward difference
6y = u(qj1/2) —u(gj—1/2) central difference

A, = ul(qijp1) + ulg)) forward average

in the independent variable ¢, say. The physical space is given by R? x T' =
0 <2< MO0O<y< N x{T >0} DeﬁneRQAxTA = (ar,ys) x T, =
(rAz,sAy) x nAT € R?* x T. Furthermore, there are integers m and n, such that

M = mAzx, N = nAy.

2 Discretization of the Mass Transport Equa-
tion

The mass transport equation is implemented numerically by using a two-step Lax-
Wendroff scheme, which is second-order accurate in time and space. Since this
technique is very well established [3], we shall not report on such standard issues
as consistency, convergence, and uniqueness.

Equation (2) is approximated by the following computational module:

n-|—1/2 . 1 AT AT
hofips = Z(Ax + Ay)h + EAM + mAyV
AT AT
B = B S+ b, (4)

Ax Ay



on RQA X TA-
For the sake of clarity, the stability criterion is established in the shoreward

direction only. Since p, = pp,h,, substituting in Eq. (4) yields
= j—£$[§( ++ Vi) —5@( + — Va)hl, (5)

where ¢, = —p, AT /2Az. A local stability criterion may be established by replac-
ing h = ("exp(irAx) in Eq. (5), from which it follows that the growth factor is

such that

|C|2 =1- 51’(1 - 5925)(1 - COS(rAx))zv (6)

and formal linearized stability shall result if || <1, which restricts £ < 1.
Using the same argument, we can find the stability criterion in the spanwise

direction, so that the stability of Eq. (4) in two space dimensions requires that

&= —(ppheAT[2Az, vphy AT [2Ay) be less than one in component form. Since

2
2 45%

— 1 — B*R2k2/2)H, | a; |
I, Z ,u]w]‘( g 7/2)Hj|a;)
2 48%k:h
y o= L(l_52h2k§/2)Jj[1jRjy—]ijj], (7)
7=1 IM]CU]

where [; and R; are, respectively, the real and imaginary parts of a;, it is possible
to show that the maximum value attained by either |, |*, or | v |?, is of the order

of 163%| a; |4. Hence, for stability the grid size is determined by the constraint



a result that sits well with the need to be economical about computer resources
and that does not conflict with the stability criterion of the overall iterative scheme
of the full model. Thus, in component form, for £, < 1, and assuming |a;| < 1

over the whole domain, we obtain

L

T

E < ﬂ_SO‘v (9)

and for ¢, <1, the same argument leads to
— < g (10)

Dissipation is known to occur except when 2 = 1. The effect, however, can be
quite small—fourth order in Axz— if the wavelengths are restricted to being much

greater than the grid size.

3 Solution of the Surface Equations

3.1 Numerical Solution of the Two-Dimensional System

The two-dimensional case is considered here because its numerical solution will
be used subsequently to evaluate the performance of the three-dimensional case.
The two-dimensional case has been considered in detail by Bona et al. [4]. We
adopt the same computational scheme and rely on their confidence in the method

to enable us to use its results for comparison in the three-dimensional case. The



numerical solution of the two-dimensional wave system

A1y = —iKgf(:Jc)al—iK5e_i5xaTa2
s = —iKqf(z)az — iKee™07q?
a(x=0) = A
ay(z =0) = A, (11)

where A; and A, are constants, will be used later in the evaluation of the imple-
mentation of the three-dimensional surface system. To solve the system, we use a

standard fourth-order explicit Runge-Kutta scheme

1
Pry1 = Or T+ E(Pl + 2P, + 2P; + Py)
P, = AzF(¢,,z,)
1 1
P, = AzF(¢, + §P1, x, + §A:1;)
1 1
P; = AzF(¢, + §P2, x, + §A:1;)

P, = AzF(¢, + P32, + Ax), (12)

where F is the right-hand side of Eq. (11), and the vector ¢, = [a1(x,), as(x,)].
The details on the applicability of such a scheme to the solution of Eq. (11) appear

in [4].



3.2 Numerical Solution of the Three-Dimensional Case

For the surface equations in the three-dimensional case, Eq. (1) is rewritten as

a1y — 1K ary, + 1K f(2,y)a; = —iK5e_i51’a§a2
a2y — 1R300y, + 1Ky f(2,y)ay = —i[(g;e“‘sxa%
ai(z =0,y) = Ai(y)
az(z =0,y) = A(y) 13)
ary(z,y=0) = 0
ary(z,y=0) = 0
asy(z,y=M) = 0
agy(x,y=M) = 0

to separate the linear and nonlinear parts. The first two boundary conditions are
inherent in the physics of the problem. The remaining boundary conditions are
artificial. These Neumann boundary conditions, combined with a computational
procedure that will be explained presently, ensures that the overall structure of the
solutions remains negligibly affected by the choice of lateral boundary conditions.
We call this technique the “zero-flux procedure.”

To justify the need for such procedure, we spell out what sort of problem we
are faced with: Since we need to compute a solution over a finite but large domain,
care must be exercised in imposing boundary conditions on the lateral sides so as
to avoid the introduction of structure in the solution that is strictly mathematical
rather than physical in nature. A possible way to compute a solution of the prob-

lem over an effectively unbounded domain over a finite grid is to impose periodic
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boundary conditions. However, periodicity imposes unwanted symmetries on the
structure of the computed solutions. To avoid this situation, we use appropriate
boundary conditions along the lateral sides and, in addition, place restrictions on
the initial bottom configuration and the boundary condition at @ = 0 so that we
can compute an oceanic event on a swath of what amounts to be an effectively un-
bounded domain. We have found that this zero flux procedure is superior to other
synthetic boundary conditions in minimizing unwanted structure in the solutions.

The Neumann boundary conditions make the problem well-posed; however,
by themselves, they would introduce a great deal of structure. Physically these
boundary conditions correspond to placing hard barriers on the lateral sides of the
domain. A posteriori we know that the solution to the model is two dimensional if
neither the bottom nor the boundary condition at = 0 has y dependence. In such
a case the zero flux condition on the lateral sides has no effect on the solution over
any part of the domain (i.e., it does not lead to y-dependent solutions). We cal-
culate the system over a computational domain that we divide into three regions.
The large central region, flanked by two sufficiently wide lateral strips, is one in
which y variation in the initial bottom or in the boundary condition at * = 0 is
possible. In the lateral strips no y dependence in the above-mentioned quantities
is permitted. The solution in these lateral strips is discarded. The initial bottom
and the boundary condition at # = 0 are connected smoothly in all three regions
so that a minimal amount of structure is introduced in the solutions. The size of

the lateral strips is determined by what amounts to an educated guess.

Define the following vectors, with the superscript T' meaning transpose, with
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all K's real:

k = i[Ky, K;]"
kf = if(xvy)[[(?n[(dT

¢ = [al(xvy)ch?(xvy)]Tecz (14)

with (z,y) € R, so that the system, Eq. (13), is now recast on the discrete grid

RQA as

[ax - kayy + kf]¢ = b(:)c,y, ¢)7 (15)

with the linear part on the left-hand side and the nonlinear terms on the right of

the equals sign, plus boundary conditions,

¢y, =0 ony=0, y=N,

¢ = ¢y on x=0,.

(16)

The term b(x, ¢) represents the nonlinear terms. Succinctly, the above equation

may be written as

Lé=h, (17)

where L is the linear operator. Let L. be a suitable discretization of the linear
operator. Suppose the value of the vector ¢ at level r for all s is known. Making
use of fixed-point methods, we can find the value of the vector at level r + 1.

Computationally, the calculation is performed in two steps: let [ be the index of
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the iteration, and let ¢ be an intermediate result. Then the following computational

scheme is proposed:

Lé = b(z,y,¢)

L¢™' = b(z,y,9). (18)

Formally, Eq. (18) is equivalent to

L™ = bla.y. ¢"). (19)

To start the iteration, we use the value of the field variables at the r** level in z
(i.e., 8" = ¢,). The condition for convergence of Eq. (18) is found by appealing to
the fixed-point theorem.

For the purpose of determining the convergence criterion, define C, a region in
C*, the generalization of the four-dimensional real space to complex variables. Let
® and h € C be two vectors in that space. Hence, the derivative of A with respect

to ® is defined as

0A;
Ag =J(®) = : 20
U (20
If the second derivative is continuous for all ® € C, then it satisfies
| Ape(®,h.h) <R[ h|? (21)

for all ®.
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Furthermore, let || - ||,, with p = 1,2, 00, represent the induced norms

h=maxicjc{Xim [ A} b= {5 Yy AgAy 2

(22)
loo = maxi<i<n {272y [ Aij[}-
Finally, define a supersystem on RQA as
[0, — KOy, + Kf]® = B(z,y,®) (23)
plus boundary conditions,
®,=0 ony=0,y=N
' (24)
® =&, onx=0
composed of (13) and its complex conjugate, with
K = [kk]"ecC
Ke(z,y) = [keke']" €C
¢ = [al(xv y)v a2(x7 y)v aT(l’, y)v a;(l‘, y)]T eC. (25)

Let L be the resulting discrete operator of the supersystem, composed of L and
its complex conjugate. Choosing a nonsingular representation for L (hence L will

be nonsingular as well), and multiplying both sides of (23) by L™, we have

St = A(x,y, ®). (26)
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Define the iteration discrepancy as

@™ =] @' — 2 |, . (27)

Appealing to the fixed-point theorem, we can surmise that

ls@™ |, = [|A(®)—A@T) [,

1 3(@1)s®" ||, <[ J(®) [|, ]| 62" [,

%

< [ I@TY) LI I@7) |l 6" < -
k—1
< TLI3@) |, @ . (28)
(=0
provided
0 <)) 3(®) < 1. (29)

Equation (29) is in fact the convergence criterion for the iteration process.
To establish an estimate of the rate of convergence, let r > 0 be given such that
the set of vectors S = {® :|| ® —s ||,< r} contains a fixed point s of A(s), that is,

s = lim &' = Jim A(®) = A(s). (30)

[—co

Further, let S C C, J(s) continuous on & and || J(s) ||,< 1. Then there exists an
e > 0 such that the fixed point iteration is convergent whenever || ®° —s ||,< e.

Define || eltl ||y, the measure of difference between the (I + l)th iterate and the
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root. Hence
[ et ],=]l @' —s ||l=| I(s)e' + A"(¢sel ) [ <[ I(s)e' | +R [ e [*. (31)
Quadratic convergence is possible if J(s) = 0,

{+1
fm e e (32)

(=0 et ],

For the problem in question, however, the best rate of convergence will be linear

since J(s) # 0:

e,

tim el <) 365, (33)

A measure of resources required in the computation is the size of the resulting
matrix problem. The slightly better flexibility in the choice of discretization for
the linear operator L is the key advantage of this method over others. The most

economical discretizations are those that lead to a tridiagonal or quintadiagonal

matrix. The choice

3 1 s k 2 5 s
L= (—:EAI’ - Evl’)¢r - (A—y25y + kf¢+1)¢r+1 (34)

leads to an n x n tri-diagonal matrix. This choice of discretization is commonly

known as the Douglas scheme. . has eigenvalues

As = —(34 2p + 2Axks) + 2pcos[n5_|7_rl] s=1,---n, (35)
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and the eigenfunctions are given by

ST . 2sT ) ST
,sin , o, sin
n4+1 n-+1 n4+1

{sin

Ws=1,---,n. (36)

Furthermore, the operator L is diagonally dominant, since

n+1
J#

the L;;’s being the entries of the matrix L, and nonsingular since

| Lii| > | Liig1| >0 i=T1. -
|Lii|Z|Lii+1|+|Lﬁ_1| L¢¢+1Lii_17é() i=2,---n—1

| Lii| > [ Lii1 | 1=2,-0m. (38)

If $ = (e, where § = aAys, and p = ZAA—;k, upon substituting these quantities

in L. the magnification factor is

1

{= 2p(1 — cos ) + 2Axks + 3

{24 /1 = 2p(1 — cos ) — 2Aake}, (39)

from which it is clear that |£| < 1. Thus the linear operator is unconditionally
stable.
An estimate of the accuracy of the discretization of the linear operator, as well

as a check on its consistency with the continuous operator on the grid, is given by

Ax?

_ Ay*
(L—L)p= 5 Pua H K= Py (40)
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where L is the continuous linear operator. Equation (40) implies that the scheme
is O(A:Jc2 + AyQ) accurate.

This order of accuracy is an upper bound on the accuracy of the overall scheme;
hence, attempting to reduce the error || €' || much below this is pointless. Since
the root is not known a priori, the iteration procedure is carried out until the dis-
crepancy is safely below the above-quoted error, but not much beyond that. This,
in effect, is the criterion used in the code for stopping the root-finding iteration
procedure.

Consistency of the discretization is readily established by comparing the con-
tinuous problem with its discretization in the limit as the grid size gets smaller.
It can be shown that the discretization approaches the continuous operator on the
grid uniformly.

Since the Douglas scheme is inapplicable at r = 0, a standard backwards Fuler

scheme,
1 1

EA1’¢T - A—ka52¢T—I—1 + Ax(kf¢)7°+17 (41)

is used to discretize L for the first step in x, which can be shown to be uncondi-
tionally stable as well.

Having made a choice on the particular form of the operator L., the condition
that || J(x) ||,< 1 for the surface system must be determined explicitly, so that
convergence is established for the sand ridge problem. To estimate the size of J(x)

we use the supersystem, Eq. (26), to find that

6B~ J(@6P! (42)
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6@ ~ J(@)sd! (43)
etc. (44)
with
J=L"'B/(®), (45)
where
0 —iKse iyl —iKgemibril 0
—i2Kge~ 07414 0 0 0
B'(®') =
i K5etiOnr gl 0 0 i setiOmregl
0 0 i2Kgeti0ers gl 0
(46)

for the I'" iterate. In Eq. (46), it is understood that the a’s are defined only on
the grid.
From Eq. (45), || J ||,< 1 if the size of L is greater than the size of B’. In the

[? norm, the convergence condition is

13 Jl=) L7'B [o<|| L7 [|2]] B [lo< 1. (47)

Since LLT = L'L, where LT is the Hermitian matrix of L, then the spectral

radius gives a measure of the two norm. Using this information, we have that

H L_l H2§ mins:l,n| )‘s |7 (48)
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or, using Eq. (35),

+ (K2 +AK2) [P + K2 az*/(3 + 2Axke) < 1, (49)

where the [, in y is used to estimate the size of the vectors, that is, a; =

?, i=1,2. Hence, Eq. (49) gives strict constraints on p, Az, and a;,

maxi<s<n @;

to be satisfied in order to guarantee convergence in the solution. Another con-
straint imposed in the numerical implementation was to restrict Az to be less
than 27/6, so as to minimize the phase error. In Figures 14 and 15 the parametric
plots of K5 and Kg are shown; they complete the picture of the relevant size of all

the quantities involved in Eq. (49).

4 Performance Evaluation of the Numerical Schemes

4.1 Evaluation of the Mass Transport Equation Scheme

We ran a few test cases in order to confirm qualitatively the stability, consistency
and accuracy of the Lax-Wendroff scheme, checking for agreement with the well-
established theoretical results. Of more concern to us was the issue of damping
and of phase drift. To quantify the scheme’s dissipation and drift, we used a model
problem for which an exact solution is known.

The model problem was

hy + khh, = 0, z € RLT >0, (50)
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with initial condition

1 x <0
hz,0) =9 14+ex 0<a<lI (51)
1+l x>1

in which 0 < k£ < 1, and ¢ < 1. The exact solution of Equations (50) and (51) is

1 r < kT
W, T) = 14 et p7 <o <14 k(1 + )T (52)
14+¢&l otherwise.

Different values of k were tried—it scales the time step—but we report our results
for £ = 0.1. For such a case, convergence is possible if hAT/Az < 10 in the
time interval 0 to 7. Since Eq. (50) conserves a quantity proportional to h?,
we compared the computed value h A with the theoretical value h as a function of
a = kAT /Az and as a function of time T, to get an idea of the scheme’s dissipation.

Specifically, we monitored the constant of motion

2
oT,a)= > hQA(T, rAz)rAz + ng[hSA(T, M) — h?’A(T, 0)], (53)
r=0

where M is a very large value in z,. For an estimation of the phase drift, we

computed

*a,T) = Y[ hA(Towr) = WL a) [P 30T ) . (54)

r
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Figures 1 and 2 show parametric plots of ¢ and e?, respectively.

185.9

185.1

184.3

norm

183.6 [

182.8 [

182.0
0.0

32.0

64.0

96.0 128.0 160.0

Figure 1: Dissipation as a function of ¢ and T with £ = 0.1 for the Lax-Wendroff

scheme. From top to bottom, a = 0.4, 0.2, 0.1, 0.05, respectively.

4.2 Performance of the Runge-Kutta Scheme

The accuracy and dissipation of the explicit fourth-order Runge-Kutta was inves-

tigated using a flat bottom and A; constants. The domain was 128 units in extent,

or roughly 10 interaction lengths. In this special case it may be shown that the

energy is given by the sum of the mode amplitudes squared. This quantity was

conserved by all trials to within 2% for all reasonable grid sizes.

An exact solution to Eq.

(11) is known when f(z) = 0. To estimate the
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0.012 T T T T

0.010 1

0.007 |- .

drift

0.005 [ VA 1

0.002 -

0.000
0.0 32.0 64.0 96.0 128.0 160.0
time T

Figure 2: Phase drift for the Lax-Wendroff scheme as a function of @ and T" with

k = 0.1. From top to bottom, ¢ = 0.4, 0.2, 0.1, 0.05, respectively.

accuracy and error of the scheme, we compared the outcome of the numerical
solution with the exact solution of this special case [5], which, in terms of Jacobi

[44 ”

elliptic functions “sn,” are

The quantity %o is determined by the boundary condition y?(0), and the value of

~ 1s related to the three roots v,, vy, and v.. The following measures were used to
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estimate the accuracy and error:

max{y., | x(rAz) — x'(z,) [}

l. =
max{y_, | x'(rAz)|}
I > | x(rAz) — x'(@,) |
> X (rAz) |

[, [ x(rAz) — X' (z,) [}2]/?
5, |\ (rAz) [P]1/2

) (56)

where y is the calculated value of a;, and x’ the exact value at the grid location.
The exact solution Y/, was computed using the algorithm given in [6], p. 189. The
error as a function of grid size is plotted in Figure 3, from which one can conclude
that the scheme is in fact fourth-order accurate and consistent. For the accuracy
and dissipation trials A; = 0.5, A2 =0, in Eq. (11), a flat bottom and parameters

a=0.3, 8=0.1, w; = 0.5, were used.

4.3 Fixed-Point Method Performance and Evaluation

Since an exact solution to the three-dimensional internal wave system is as yet
unknown, we sought to discern the accuracy of the fixed-point method (FPM)
using local analysis. Let A be the size in x or y of each grid element. A comparison
of the computed solution at a particular point, using A, with a solution with grid
size A/2 yields

IXA = XAp| =k =CO[(A/2)7]. (57)

Halving the grid size again

XAz = XAl = k= CO[(A/4)]. (58)
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0.040 T T T

0.032

0.024
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Thus, using Eq. (57) and Eq. (58) one can solve for p to get an estimate of the

order of accuracy of the scheme:

. log kl — log kQ

P log 2 (59)

Using the same parameters and boundary conditions as those used in connection
with the Runge-Kutta scheme evaluation trials, and a domain with length of 128
and span of 32, we found that FPM yields an average value of p = 1.8, with a

standard deviation of 0.5. Values of both field quantities were used to estimate p,
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and they were taken from various points in the domain.

A systematic study of the convergence of the method was not carried out.
However, the computed values tended to converge as the grid size was refined.
Since comparisons of the computed solutions with an exact expression for the three-
dimensional case were not possible, a comparison of the cross-sectional values of an
effectively two-dimensional solution computed using FPM along the whole length
in z and midway in the spanwise direction y, with a solution computed using
the Runge-Kutta method with a very fine grid spacing was made to ascertain the
qualitative correctness of the FPM scheme. A measure of the error is given by the

norms

max{>_, | x(rAz, mid) — x'(x,) |}

loo (A2, Ay) = max{¥%, | X'(rAz) |}
2, [ x(rae, mid) — X'(x,) |
Li(Az, Ay) >, Y (rAz) |
LAe gy — XAz mid) G [ (60)

[ X (rA) ]2

where y represents the solution obtained using FPM and Y’ the solution computed
with the Runge-Kutta scheme.

The result for the case Ax = Ay is shown in Figure 4. The same outcome is
obtained when Ay = 0.25 and Az is varied. On the other hand, when Az = 0.25
is fixed and Ay is varied, very little change in the norms is observed. In this last
case, the norms had an approximate value of 4.4 x 107 for all grid sizes in the y
direction that were used. Note that there is no y dependence in the solution for

this particular trial.
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Figure 4: Error as a function of grid size, with Az = Ay. [o:— — - — —, [

The rate at which the iteration procedure converges in FPM as a function of the
grid size was also investigated. With o = 0.3, § = 0.08, w; = 0.5, and boundary

conditions A; = 0.5 and A; = 0.1, and a flat bed, the iteration discrepancy

loggolmax{ 3 |61 (. sAy) — /(. sAy) [}] (61)

s=0

was monitored at a particular value of x in a fairly large domain. As expected,
it was found that the number of iterations required to meet a certain iteration

tolerance decreased as the grid was refined. Figure 5 shows how the iteration
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discrepancy drops after each iteration [ for a number of different grid sizes. It is
evident from the graph that a finite and small number of iterations are required to
reach adequate error tolerances using reasonably-sized grids.

The iteration convergence of the solution at the first step in + was examined as
well. Recall that for the first step a backwards Euler scheme was used to discretize
the linear operator instead of the Douglas scheme. The finding is that the number
of iterations was roughly double the number required elsewhere in the domain,

where the Douglas scheme is used.
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Figure 5: Iteration discrepancy as a function of grid spacing. The number of

iterations drops as A =4, 2, 1, 0.5 respectively.
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4.4 Storage and Speed of the FPM

An estimate for the operation count for the FPM is as follows. Eq. (18) leads to
the problem

Lé=Dh (62)

for the unknown ¢, where L is a 2n x 2n tridiagonal matrix, m times to cover all
values of  in the domain. The efficient way to solve Eq. (62) is to decompose the
problem in two steps: let L = WU, where W is a lower triangular matrix and U

and upper triangular matrix. Then

is solved for g, followed by

to finally obtain ¢. The total operation count for the solution of Equations (63)
and (64) is (hn — 4) multiplies and (3n — 3) adds. All told, O(16n) operations. In
turn, this process is performed [ times to compute the (I + 1) iterate, and finally
m times to cover all values of x. The total is m x [ x O(n).

The storage requirements of the FPM may be estimated as follows: the old and
the new vector at each x, and another vector for the iteration process, need to be
stored. Hence 6n values are stored. In addition, all the entries of a tridiagonal
matrix of size 2n x 2n, or roughly 6n values need to be stored. The total is thus
12n, or O(n) values. In fact, we could be even more economical and use multipliers

in the entries of L, so that only one half of the tri-diagonal matrix entries need to
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be stored.

Note that its economy of resources hinges upon the simplicity of the matrix
that the discretization generated. If higher-order accuracy is required, the matrix
will be more complicated than the simple tridiagonal matrix that was used in this
study, requiring greater computational resources. A somewhat unavoidable prob-
lem with the FPM is that the discretization has significant dissipation. However,
the dissipation can be made tolerable at the expense of greater computational
resources, that is, by refining the grid.

To illustrate the degree of dissipation in the surface system FPM implementa-
tion, we used the same parameters and domain that was used in connection with the
iteration issue, and we fixed the iteration discrepancy tolerance at 107°. T'wo types
of trials were carried out, both using a flat bottom. In the three-dimensional trial
we assumed the boundary conditions were A; = 0.5 + 0.01y and A; = 0.1 4+ 0.01y
and monitored the conserved Hamiltonian [5] along the length in the x direction,
midway in the spanwise direction. In the two-dimensional trial, we set A; = 0.5
and A; = 0.1 and monitored the same quantity along the ray. The outcome of both
trials was qualitatively similar: the computed conserved quantity oscillated with
a period equal to the interaction length. The difference between the peak value
and the minimum value increased as the grid size was made larger. In addition,
dissipation (i.e., the drop of the peak value as a function of position ) increased
as the grid size was made larger, and as a result, the local interaction length grew
since the amplitude of the modes were attenuated. The attenuation we know is
inherent in the discretization of the linear operator. The dissipation and oscillation

of the conserved quantities can be made negligible by refining the grid. We also
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Grid Size A | Fluctuation
4.00 0.1002
2.00 0.0627
1.00 0.0168
0.50 0.0050
0.25 0.0014

Table 1: Energy fluctuation vs. grid size. Equilateral grid case.

Grid Size Ay | Fluctuation
4.00 0.0018
2.00 0.0013
1.00 0.0013
0.50 0.0012
0.25 0.0014

Table 2: Energy fluctuation vs. Ay. Az = 0.25 fixed.

found that the effect is much more pronounced when A; = 0 exactly, which yields
solutions with very sharp minimas in the field variables. Table 1 shows the differ-
ence between successive maxima and minima for the second trial as a function of
grid size, with Az = Ay. We also report the outcome of fixing Ax = 0.25 and
varying Ay, in Table 2, and the opposite settings are illustrated in Table 3. The
two-dimensional trials for Az = 0.25 and Ay = 4 showed significant discrepancies
when compared with the Runge-Kutta calculation, and the energy for this case

oscillated in a somewhat regular pattern.
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Grid Size Ax | Fluctuation
4.00 0.1415
2.00 0.0628
1.00 0.0198
0.50 0.0049
0.25 0.0014

Table 3: Energy fluctuation vs. Az. Ay = 0.25 fixed.

To conclude this section, we report the wall-clock times for three runs of the
internal wave equations, as discretized using FPM. The code was written in Fortran
T7—because of issues related to code portability—i-n a straightforward manner,
except that recursion was used in the iteration procedure. For the size of these
runs, the use of recursion was probably marginally slower than having opted for
repeated subroutine calls. No machine optimization or floating-point accelerators
were used.! The time trials were carried out with an initial bottom configuration
f = 0.0lz. All other parameters and physical quantities were the same as those
used previously. The domain was a square with 50 units to its side. Two times are
reported, the first one, in Table 4, corresponds to the total time required to find
the field variables everywhere in the domain, and a second one, given in Table 5,

is the time required to compute all values in the y direction, for a particular z.

!The Titan’s vectorizability was not exploited either. Otherwise, its reported performance

would not compare so unfavorably.
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Machine A =1, (50 x 50) | A =0.5, (100 x 100) | A =0.25, (200 x 200)
Sun Sparc SLC 7.43 25.42 78.8
Sun Sparc 2 2.29 7.81 23.13
Ardent Titan 2X P1 3.9 13.9 44.81

Table 4: Wall-clock times in seconds vs. grid size (number of grid points per

domain) for the computation of the surface system over the whole domain using

the fixed-point method

Machine

A =1, (50 x 50)

A = 0.5, (100 x 100)

A = 0.25, (200 x 200)

Sun Sparc SLC
Sun Sparc 2

Ardent Titan 2X P1

0.16

0.06

0.08

0.25

0.08

0.13

0.50

0.15

0.29

Table 5: Wall-clock times in seconds for the computation of the surface system for

all values of y at a particular = using the fixed-point method
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5 Summary

The model for the formation and evolution of three-dimensional sand ridges on
the continental shelf described in [1] and [2] has been shown to be adequately
discretized using finite difference techniques and fixed point methods. The mass
transport equation is implemented by using a standard Lax-Wendroff scheme, while
the surface system was discretized using a Douglas scheme for the linear part and
iterative correction for the nonlinear terms. We call such a scheme the fixed-point
method (FPM).

The schemes’ performance was evaluated in detail. It was found that both
schemes are second-order accurate in time and space. They were also found to
be efficient in both storage and speed and quite straightforward in their computer
implementation. The schemes were found to converge as the mesh size was dimin-
ished.

The Lax-Wendroff scheme was found to have significant phase drift, especially
when the mesh size is increased. The FPM was shown to have significant diffusion
for large grid spacings. This damping will introduce phase errors in the waves,
especially if the domain is quite large.

Included in this study is a prescription to monitor the stability of the solutions.
This condition was monitored in all trial runs a posteriori. The condition poses a
severe restriction on the size of the computed solutions, but it has been found to
be large enough to encompass most physically relevant situations.

In order to not introduce unwanted symmetries in the solution of the wave sys-

tem, a “zero flux condition” was introduced to handle the boundary conditions on
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the lateral sides of the domain. Briefly described, the condition amounts to plac-
ing Neumann boundary conditions on the lateral sides of the domain, sufficiently
far away from the region of interest, connecting this domain to lateral swaths of
computational space in which the three-dimensionality of the solutions is gradually
collapsed into two dimensions. While the technique was not a resounding success,
especially for domains that were very long in the x direction in which ample space
was available for the solution in the region of interest to be affected by the hard
lateral barriers, it was preferred over other alternatives that would complicate the
problem or pose severe symmetry conditions on the solutions.

In summary, the solutions to the model may be confidently found using the
techniques described in this paper. In order to reduce the phase error and dissi-
pation in the computed solutions, the mesh size must be small. The size of the
solutions to the wave system must be monitored to insure stability. The regime
of stability of the mass transport equation discretization was found to be well

estimated by the well-known Courant-Friedrich-Lewy condition.
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The following are constants associated with Eq. (1):

with

R

St
S

K, = F

K, = F

Ky = DE;y

K, = D)k,

Ky = D5

K¢ = Dy5,

(65)

21— %)
ki(l - 26%2)
1/2k; (66)

—kr‘(;lkl {ky — k1 + wl((}j—; + %)}

20k ) + 2wi) Jwa.
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